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Diffusion of concentrated neutral hard-sphere colloidal suspensions
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IRI Delft University of Technology, 2629 JB Delft, The Netherlands
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We evaluate theoretical expressions for the long-time wave-number-dependent self-diffusion and collective
diffusion coefficientsDS

L(k,f) andDL(k,f), respectively, as a function of volume fractionf and wave vector
k for neutral monodisperse hard-sphere colloidal suspensions over the entire fluid range. The theory is based on
the Smoluchowski equation with mean-field-like hydrodynamic interactions, cage diffusion, and is free of
adjustable parameters. The basic physical mechanisms underlying our formulas are discussed and the results
are compared with recent experimental results by Segre` and Pusey@Phys. Rev. Lett.77, 771 ~1996!#.

PACS number~s!: 82.70.Dd, 83.10.Ff
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I. INTRODUCTION

In previous papers we presented a molecular theory
the dynamic~frequency-dependent! and the long-time mac
roscopic~Newtonian! viscosity @2–4# and for the long-time
macroscopic self-diffusion coefficient@4,5# of concentrated
neutral hard-sphere-like colloidal suspensions. This the
was based on the idea, first developed for concentrated
lecular fluids using kinetic theory@6–8#, that for high con-
centration colloidal suspensions~volume fractionsf.0.35!,
the dominant physical process is a short-time cage-diffus
process. Here one uses that forf.0.35 each colloidal par-
ticle finds itself in a cage~of about the size of the hard
sphere diameters! formed by its neighbors, which makes th
escape from the cage difficult. This leads to a slow relaxa
of the particle displacements involved in collective dens
fluctuations back to their equilibrium positions. This rela
ation is particularly slow for density fluctuations of wav
numberk5k* '2p/s, since the equilibrium static structur
factor S(k,f) has a very pronounced maximum neark
5k* , implying a great amount of ordering in the suspensi
which greatly inhibits the escape of particles from th
cages. This physical picture has been confirmed by li
scattering experiments on concentrated colloidal suspens
as well as neutron scattering experiments of atomic liqui

Here we apply the same idea to the long-time wa
number-dependent self-diffusion and collective diffusion c
efficients, DS

L(k,f) and DL(k,f), respectively, where
DS

L(f)5DS
L(k50,f), the long-time macroscopic self

diffusion coefficient@9#. We show that good agreement wi
experiment can be obtained by using cage diffusion as
dominant physical process determining both the short-t
as well as the long-time diffusive behavior at high conce
trations. In particular, the long-time wave-number-depend
collective~self-! diffusion coefficient can be written in goo
approximation as a product of two contributions. First,
short-time contributionDS(k,f)@DS

S(f)#, directly related to
the initial slope of the equilibrium intermediate~self-! scat-
tering functionF(k,f,t)@FS(k,f,t)# as a function oft, in
which a particle rattles inside the cage, formed around it
its nearest neighbors. Second, a long-time contribution
PRE 611063-651X/2000/61~3!/2967~10!/$15.00
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which a particle moves from cage to cage. This long-tim
contribution is calculated explicitly from the Smoluchows
equation using the mode-mode coupling approximat
~MMCA ! with hydrodynamical interactions incorporated in
mean-field-like manner. In order to obtainDL(k,f) explic-
itly one needs the three-particle correlation function. It
shown that several suggestions in the literature lead to v
different results, but that the approximation proposed
Jackson and Feenberg@10# appears to work well.

The past years have seen a considerable effort in this
of study dating back to the first theoretical expressions
DS

L(k,f) and DL(k,f), obtained directly from the Fokker
Planck equation@11# and later shown to be equal to the r
sults obtained from the Smoluchowski equation@12#. How-
ever, those results neglected hydrodynamic interacti
altogether and are consequently only valid at very low co
volume fractions. Furthermore, Hess and Klein@11# used an
unphysical approximation for the three-particle correlati
function to compare their expression forDL(k,f) with ex-
perimental results, a point further discussed below. More
cently, Szamel and Lo¨wen@13#, Wagner@14#, and Bauret al.
@15# extended those early results, but again neglect hydro
namic interactions completely. Szamel and Lo¨wen used the
Jackson and Feenberg@10# approximation for the three
particle correlation function and investigated the glass tr
sition of a colloidal suspension@13#. Wagner used a self
consistent viscoelastic relaxation model and compared
theory with experimental results obtained for strongly cor
lated charged suspensions@14#. He also compared two ap
proximations for the three-particle correlation function, i.
the Hess and Klein@11# approximation and the Jackson an
Feenberg@10# approximation, a point also discussed belo
Bauret al. also used the Jackson and Feenberg@10# approxi-
mation for the three-particle correlation function, but i
cluded in first approximation the effect of polydispersity o
the so-called nonexponentiality factor@15#. Very recently,
further progress has been made by incorporating far-field
drodynamic interactions@16# and extending the results t
polydisperse suspensions and colloidal mixtures@17,18#.
However, although clearly a considerable improvement
strongly interacting charged suspensions or neutral sus
sions at a low volume fraction, far-field hydrodynamic inte
2967 ©2000 The American Physical Society
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actions are certainly not suitable for concentrated neutral
pensions. Since the extension to colloidal mixtures is bey
the scope of this paper and the results reduce to the resu
Nägele and Baur@16# for one-component suspensions,
further reference to these papers is made. As far as we kn
the only results valid for concentrated neutral suspens
are those obtained by Medina-Noyola@19#, who calculated
DS

L(k,f) by solving approximately the Langevin equatio
for the velocity of a tracer particle and those obtained
Banchio et al. @20#, who presented theoretical results f
DL(k5k* ,f) andDS

L(f) as well as for the Newtonian vis
cosity, results that are further discussed below.

The organization of this paper is as follows. We start w
the theoretical derivation of our results in Sec. II. In Sec.
we consider the short-time self-diffusion and collective d
fusion coefficientsDS

S(f) andDS(k,f), respectively, where
short times refer to the regiontB;t!tP . Here tB5m/z0
;1 ns, is the Brownian time in which the initial velocity o
a particle of massm relaxes to equilibrium andtP
5s2/4D0;1 ms is the Pe´clet or interaction time, character
istic for free particle diffusion over a distance equal to
own radius. The friction and self-diffusion coefficient of a
isolated Brownian particle,z0 andD0 , respectively, are re
lated through the Einstein relationz05kBT/D0 , with kB
Boltzmann’s constant andT the temperature. In Sec. IV th
long-time (t@tP) wave-number-dependent self-diffusio
coefficientDS

L(k,f) is evaluated and its limit fork50, i.e.,
the macroscopic self-diffusion coefficientDS

L(f), is com-
pared with experimental results. In Sec. V the long-timet
@tP) wave-number-dependent collective diffusion coe
cient DL(k,f) is evaluated for different approximations o
the three-particle correlation function and compared with
recent experimental results of Segre` and Pusey@1#. We con-
clude with a discussion of the main results.

II. THEORY

The diffusive behavior in concentrated colloidal suspe
sions is connected to the decay of collective density fluct
tions, described by the the wave numberk and timet depen-
dent equilibrium intermediate scattering functionF(k,f,t),
defined by

F~k,f,t !5
1

N
^dn~2k!eV̂tdn~k!&, ~1!

wheredn(k) is a plane wave collective density fluctuatio
mode with wave vectork, i.e.,

dn~k!5(
i 51

N

e2 ik•r i2K (
i 51

N

e2 ik•r iL , ~2!

with r i the position of particlei at timet50. The bracketŝ&
denote the equilibrium ensemble average with the canon
distribution function andV̂ is the adjoint Smoluchowski op
erator describing the time evolution of the system~e.g., Ref.
@21,22#!

V̂5 (
i , j 51

N

$“ i1bFi~G!%•Di j ~G!•“ j . ~3!
s-
d
of

w,
s

y

I
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-
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Here“ i5]/]r i , b51/kBT, Fi(G)52“ iU(G) is the force
on particlei due to direct interactions with all other particle
in the configuration spaceG5(r1 ,...,rN) and Di j (G) is the
diffusion tensor which incorporates hydrodynamic intera
tions.

The corresponding definition of the equilibrium interm
diate self-scattering functionFS(k,f,t) is

FS~k,f,t !5^dn1~2k!eV̂tdn1~k!&, ~4!

with dn1(k) the one-particle density fluctuation mode

dn1~k!5e2 ik•r12^e2 ik•r1&. ~5!

Here r1 is the tagged particle’s position at timet50. We
note that from partial integration one finds the relation

^Fi~G! f ~G!&52b^“ i f ~G!&, ~6!

for any functionf (G), a result that is frequently used below

A. Short-time self-diffusion and collective diffusion

First, we consider theshort-time self-diffusion andcol-
lective diffusion coefficients, where short times refer to th
region tB;t!tP . For short times the equilibrium interme
diate scattering function behaves as

F~k,f,t !5S~k,f!e2k2DS~k,f!t, ~7!

while the analogous expression forFS(k,f,t) is

FS~k,f,t !5e2k2DS
S
~f!t. ~8!

Here S(k,f)5F(k,f,t50) and DS
S(f) and DS(k,f) are

the short-time self-diffusion and collective diffusion coef
cients, respectively, which can be expressed in terms
k-dependent averages over the diffusion tensorDi j (G) ~e.g.,
Refs. @21,22#!, but a simple explicit expression that full
incorporates the complicated many-body hydrodynamic
teractions for volume fractionsf.0.4 is still lacking. There-
fore, we propose alternative explicit expressions forDS

S(f)
and DS(k,f), based on the analogy between neutral ha
sphere colloidal suspensions and molecular fluids and c
pare them with experimental results in Sec. III.

B. Long-time collective diffusion

Next we consider thelong-time collectivediffusion coef-
ficient DL(k,f), defined in terms of the Laplace transfor
F̃(k,f,z)5*0

`dt exp(2zt)F(k,f,t) of F(k,f,t) for z50,
leading to~e.g., Refs.@21,22#!

DL~k,f!5S~k,f!Y E
0

`

dtk2F~k,f,t !. ~9!

To develop a theory forDL(k,f) we start from Eqs.~1!
and ~9! and replace, like Brady@23#, the adjoint Smolu-
chowski operatorV̂ with its corresponding mean-field ex
pression
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V̂MF5DS
S~f!(

i 51

N

$“ i1bFi~G!%•“ i , ~10!

i.e., by approximating the diffusion tensorDi j (G) in Eq. ~3!
by its ‘‘mean-field’’ averagê Di j (G)&5d i j 1DS

S(f). Then,
applying standard projection operator techniques to Eq.~1!,
and generalizing the procedures developed by Cichocki
Hess@12# for low concentrations to high concentrations, w
obtain an expression forDL(k,f) for all f, i.e.,

DL~k,f!5
DS

S~f!/S~k,f!

11M̃ ~k,f!/@k2DS
S~f!#

, ~11!

with M̃ (k,f)5*0
`dtM(k,f,t). Here M̃ (k,f) is directly

proportional to the generalizedk-dependent longitudinal vis
cosity @12# andM (k,f,t) is the collective longitudinal stres
time-autocorrelation function,

M ~k,f,t !5
@bk2DS

S~f!#2

N
^s i~2k!eV̂MF

irr ts i~k!&, ~12!

where the microscopic longitudinal stress is given by

s i~k!52(
i 51

N H ik•Fi

k2 1kBT
S~k,f!21

S~k,f! J e2 ik•r i, ~13!

and V̂MF
irr is the mean-field expression for the irreducib

adjoint Smoluchowski operator.V̂MF
irr can be obtained from

the result of Cichocki and Hess@12#, by using the mean-field
approximation for the diffusion tensor discussed below E
~10!. The irreducible Smolochowski operator keepss i(k)
orthogonal to all single collective density fluctuation mod
when it evolves in time. Therefore, the decay ofM (k,f,t)
will be determined in first approximation by the decay oftwo
coupled collective density fluctuation modes.

To calculate this coupled decay contribution toM (k,f,t)
of Eq. ~12! we apply the mode coupling theory and introdu
the projection operatorP̂2 on bilinear products of two col-
lective density fluctuations as in Refs.@11,22#, i.e.,

P̂25 (
k1 ,k2

udn~k1!dn~k2!&^dn~k1!dn~k2!u
2N2S~k1 ,f!S~k2 ,f!

. ~14!

We restrict the action of exp(V̂MF
irr t) in Eq. ~12! to the space

of products of density fluctuations only, i.e., we write

eV̂MF
irr t' P̂2eV̂MF

irr tP̂2 . ~15!

From Eqs.~12!, ~14!, and~15! one finds then forM (k,f,t),

M ~k,f,t !5
1

16p3n E dqF V~k,q!

S~q,f!S~ uk2qu,f!G
2

3F~q,f,t !F~ uk2qu,f,t !. ~16!

A similar expression forM (k,f,t) has been derived befor
by neglecting hydrodynamic interactions altogether, cf. Re
@11,14# ~based on the Fokker-Planck equation! and Refs.
@13,15# ~based on the Smoluchowski equation! and recently
independently from us by using a far-field approximation
d

.

s

s.

r

the diffusion tensor@16#. Those different approximation
only result in different expressions for the vertex functi
V(k,q). In the mean-field approximation the vertex functio
representing the strength of the coupling between the mi
scopic longitudinal stresss i(k) and the bilinear products
dn(q)dn(k2q), is given by

V~k,q!5
@bk2DS

S~f!#

N
^s i~2k!dn~q!dn~k2q!&.

~17!

Using Eq.~13! for s i(k) and Eq.~6! yields

V~k,q!5DS
S~f!k•H kT~k,q!

S~k,f!
2qS~ uk2qu,f!

2~k2q!S~q,f!J , ~18!

where

T~k,q!5
1

N
^dn~2k!dn~q!dn~k2q!& ~19!

is a wave-number-dependent three-particle correlation fu
tion. One easily shows thatT(k,q)5S(k,f) ~k finite, q
large!, T(k,q)5S(q,f) ~k large, q finite! and T(k,q)
5S(uk2qu,f) ~k large,q large, anduk2qu finite!. For ex-
plicit calculations we use different approximations intr
duced in the literature, which all satisfy these limiting pro
erties. We then evaluateM (k,f,t) of Eq. ~16! for all times
using the short-time expression~7! for F(uk2qu,f,t) and
F(q,f,t). In Sec. V, we compareDL(k,f) for different ap-
proximations of the three-particle correlation function wi
experimental results.

C. Long-time self-diffusion

Finally, we consider thelong-time self-diffusion coeffi-
cient DS(k,f). Since the derivation is essentially the sam
as that for the long-time collective diffusion coefficient pr
sented above, we only give the final results. The long-ti
wave-number-dependent self-diffusion coefficientDS

L(k,f)
can be obtained from the equilibrium intermediate se
scattering function via~e.g., Refs.@21,22#!

DS
L~k,f!51Y E

0

`

dtk2FS~k,f,t !. ~20!

Starting then from Eqs.~4! and ~20!, replacingV̂ by V̂MF
@cf. Eq. ~10!# and proceeding as before in Eqs.~11! to ~17!
we obtain

DS
L~k,f!5

DS
S~f!

11M̃S~k,f!/@k2DS
S~f!#

, ~21!

with M̃S(k,f)5*0
`dtMS(k,f,t), where
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MS~k,f,t !5
1

8p3n E dqFVS~k,q!

S~q,f! G2

3F~q,f,t !FS~ uk2qu,f,t !, ~22!

with the self-vertex functionVS(k,q) given by

VS~k,q!5DS
S~f!~k•q!@S~q,f!21#. ~23!

Expressions similar to Eq.~22! have been obtained before b
neglecting hydrodynamic interactions altogether@11,15# and
by using a far-field approximation for the diffusion tens
@16#, resulting in different expressions for the self-vert
function VS(k,q).

We evaluateMS(k,f,t) for all times in terms of the
short-time expressions forF(q,f,t) of Eq. ~7! and FS(k
2q,f,t) of Eq. ~8!. We remark that the decay ofMS(k,f,t)
is determined in first approximation by the decay ofone
collective density fluctuation mode andoneone-particle den-
sity fluctuation mode. Therefore, the operatorP̂2 projects for
self-diffusion on the bilinear product of a collective dens
fluctuation and a one-particle density fluctuation mode~cf.
Refs.@11,22#!. This results in the appearance of the equil
rium intermediate self-scattering functionFS(uk2qu,f,t) in
Eq. ~22! @cf. Eq. ~16!#.

III. SHORT-TIME SELF-DIFFUSION AND COLLECTIVE
DIFFUSION

At short timestB;t!tP the dominant physical proces
involves the interaction of the Brownian particles with t
fluid and with each other through the fluid, the so-call
hydrodynamic interactions. These hydrodynamic interacti
are complicated many-particle interactions for which expl
evaluations exist only in limiting cases. To date there
only exact results forDS

S(f) and DS(k,f) for two isolated
hard-sphere particles based on series expansion of the h
dynamic functions in powers of the inverse distance betw
the centers of the two particles@24,25# ~a recent overview is
presented by Dhont@22#!. These results are valid up to se
ond order in the volume fractionf, thus clearly restricting
the applicability to low volume fractions. Approximat
evaluations were made by Beenakker and Mazur@26#, by
considering the hydrodynamical motion of one hard-sph
particle in a stationary field due to all other particles at re
which restricts the applicability effectively to short time
tB;t!tP . Using a density cluster expansion technique th
obtained results for the self-diffusion and collective diffusi
coefficient up to intermediate volume fractionsf'0.4. More
recently, accurate numerical results were obtained for v
ume fraction up tof50.45, based on multipole expansio
for the hydrodynamic interactions and lubrication theory
the singular forces near contact@27#.

Up to now it seems that no explicit results for the tran
port properties of concentrated colloidal suspensions, i.e.
volume fractionsf.0.40, which fully take into account th
many-particle hydrodynamic interactions, are available in
literature. Therefore, we propose to use a short-time col
tive diffusion coefficientDS(k,f), which is physically inter-
preted in terms of the characteristic cage-diffusion coe
cient DC(k,f), in analogy with the result for concentrate
-
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or
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-

molecular fluids developed from basic kinetic theory@6,7#,
i.e.,

DS~k,f!'DC~k,f!5
DS

S~f!d~k!

S~k,f!
. ~24!

Here S(k,f) is the equilibrium static structure factor an
d(k)5@12 j 0(ks)12 j 2(ks)#21, a combination of spheri-
cal Bessel functionsj l(k) of the orderl, with s the diameter
of the Brownian particle.

As said, Eq.~24! is an adaptation of a very similar for
mula for the cage-diffusion coefficient in concentrated m
lecular fluids, where the short-time Enskog diffusion coe
cient DE(f) is replaced by the short-time self-diffusio
coefficientDS

S(f) of a colloidal suspension. Consistent wi
this analogy betweenDE(f) and DS

S(f), Cohen and de
Schepper@28# suggested to use for the short-time se
diffusion coefficient in concentrated colloidal suspensio
the ~phenomenological! expression

DS
S~f!5

D0

x~f!
, ~25!

where the Boltzmann free diffusion coefficientDB(f) is re-
placed by its colloidal equivalence, i.e., by the Stoke
Einstein diffusion coefficientD0 of an isolated Brownian
particle. Herex(f)5g(r 5s,f), the equilibrium pair distri-
bution function of two hard-sphere particles of diameters at
contact.

Equations~24! and ~25! are compared with experimenta
results on neutral colloidal suspensions in Figs. 1 and
respectively. Here the Carnahan-Starling approximat

FIG. 1. Reduced short-time collective diffusion coefficie
DS(k,f)k2s2/D0 as a function ofks. The datapoints are experi
mental results for suspensions of neutral polymethylmethacry
~PMMA! spheres obtained by@41# ~d!, @42# ~s!, and@30# ~n!. The
solid line represents Eq.~24! for the volume fractionsf50.443~a!,
0.465 ~b!, and 0.494~c!. In ~d! the dotted line corresponds to
surface layer of 9 nm (f50.44) and the dashed line to one of 1
nm (f50.49) @30#.
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x(f)5(120.5f)/(12f)3 is used and the static structu
factor is calculated in the Percus-Yevick approximation, w
a correction discussed by Henderson and Grundke@29#. We
find systematically a lower result forDS(k,f)k2s2/D0 , as
compared with the experimental data~cf. Fig. 1!. This is
consistent with the fact that our value forDS(k,f) at k
5k* is about 20% smaller than the value obtained by us
the semiempirical result for the hydrodynamic functi
H(k* ,f)5121.35f5DS(k* ,f)S(k* ,f)/D0 @20#. The un-
derestimation of the value forDS(k,f) at k5k* is most
probably a result of the neglect of the polydispersity on
value of the maximum of theS(k,f), since polydispersity
lowers the first peak of theS(k,f). The discrepancy can als
be related to small inaccuracies in the determination of
effective hard-sphere diameters, as is illustrated in Fig. 1~d!.
Here DS(k,f)k2s2/D0 is calculated for two values ofs,
corresponding to a surface layer of 9 nm and 14 nm@30#.
The uncertainty in the determination of the volume fracti
also causes difficulty in interpreting quantitatively the va
ous experimental results@31,32#.

In Fig. 2, the result of Beenakker and Mazur@26#, who
obtainedDS

S(f) for volume fractions up tof50.45, is also
presented. Considering the small deviations between t
result and that of Eq.~25! and our primary interest in high
volume fractionsf.0.40, Eq.~25! seems to be able to de
scribe the experimental data over the entire fluid range,
for volume fractions 0,f,0.55. We note that our approx
mation becomes increasingly better for high volume fr
tions f.0.40.

IV. LONG-TIME SELF-DIFFUSION

In Sec. II we derived an expression@cf. Eq. ~21!# for the
long-time wave-number-dependent self-diffusion coeffici
DS

L(k,f) in terms of M̃S(k,f)5*0
`dtMS(k,f,t), with

FIG. 2. Relative short-time self-diffusion coefficientDS
S(f)/D0

as a function of the volume fractionf. The datapoints are exper
mental results of polystyrene spheres in water obtained by@43# ~h!,
neutral PMMA spheres in organic solvents obtained by@36# ~,!,
@44# ~n!, and @41# ~L!, and of double coated silica spheres
tetrahydrofufurylalcohol@45# ~3!. The solid dots are compute
simulation results@46#. The solid line represents Eq.~25! and the
dashed line corresponds to the result of Beenakker and Mazur@26#.
g

e

e

ir
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-

t

MS(k,f,t) given by Eq.~22!. Restricting ourself to first or-
der mode-coupling theory implies that in Eq.~22! the short-
time expressions~7! for F(k,f,t) and~8! for FS(k,f,t) can
be used. This restriction has already been discussed in
application of the MMCA to the diffusion and the viscosi
of dense molecular fluids and to the viscosity of concentra
colloidal suspensions and seems valid for volume fracti
in the fluid range@4,33#.

Then, the explicit result for the long-time wave-numbe
dependent self-diffusion coefficientDS

L(k,f) is given by

DS
S~f!

DS
L~k,f!

511
DS

S~f!

8p3n

3E dq
$k̂•q@S~q,f!21#%2

S~q,f!@DS
S~f!uk2qu21DS~q,f!q2#

,

~26!

which can be calculated, onceDS
S(f), DS(k,f), andS(k,f)

are known. We remark that near the glass transition s
consistent mode-coupling theories are needed and the s
time expressions~7! and ~8! are no longer sufficient to de
scribe the macroscopic transport properties.

From an experimental point of view the long-time wav
number-dependent self-diffusion coefficient in the limit
k50, i.e., the macroscopic self-diffusion coefficientDS

L(f)
5DS

L(k50,f), is particularly important. This quantity is di
rectly related to the long-time mean-square displacement
cording to

W~ t !56DS
L~f!t, t@tP , ~27!

and consequently determines the macroscopic self-diffus
coefficient of a tagged particle as observed in dynamic li
scattering experiments. Using Eqs.~24! and ~25! for the
short-time collective and self-diffusion coefficients, respe
tively, performing the angular integration and changing
the dimensionless variablex5qs, we obtain from Eq.~26!
the explicit result for the long-time macroscopic se
diffusion coefficient,

DS
S~f!

DS
L~f!

511
1

36pf E
0

`

dxx2
@S~x,f!21#2

S~x,f!1d~x!
, ~28!

a result previously published by Cohen and de Schep
@34,35#.

In Fig. 3, the result~28! for DS
L(f) is compared with

experimental data on neutral colloidal suspensions obta
by several authors@36–38#. ForDS

S(f) the suggestion~25! is
used and forS(k,f) the same approximation is used as d
cussed in Sec. III, which compares well with experimen
results forS(k,f). Also given in Fig. 3 is the result obtaine
by Medina-Noyola@19#, who solved approximately the gen
eralized Langevin equation for the velocity of a tracer p
ticle.

V. LONG-TIME COLLECTIVE DIFFUSION

In Sec. II we derived an expression for the the long-tim
wave-number-dependent collective diffusion coefficie
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DL(k,f) @cf. Eq. ~11!#. Restricting ourselves again to firs
order mode-coupling theory, i.e., using the short-time
pression~7! for F(q,f,t) andF(uk2qu,f,t), we obtain the
explicit result forDL(k,f),

DS
S~f!/S~k,f!

DL~k,f!
511

1

16p3nk2DS
S~f!

3E dq
@V~k,q!#2/S~q,f!S~ uk2qu,f!

DS~q,f!q21DS~ uk2quf!uk2qu2 . ~29!

The essential difference of Eq.~29! with Eq. ~26!, for the
long-time self-diffusion coefficient, is the appearance of
unknown three-particle correlation function,T(k,q), in Eq.
~18! for V(k,q). To evaluate Eq.~29! we use three approxi
mations forT(k,q) obtained from the literature.

~i! The first approximation was suggested by Hess
Klein @11# and reads

THK~k,q!5S~k,f!@S~ uk2qu,f!1S~q,f!21#. ~30!

Hess and Klein@11# and more recently Wagner@14# applied
this approximation to studies of the long-time collective d
fusion coefficient of strongly interacting charged colloid
suspensions.

~ii ! The second approximation, the so-called convolut
approximation, was introduced by Jackson and Feenb
@10# in a study of elementary excitations in liquid helium a
reads

TJF~k,q!5S~k,f!S~ uk2qu,f!S~q,f!. ~31!

This approximation was first used by Szamel and Lo¨wen
@13# in an investigation of the glass transition of colloid

FIG. 3. Relative long-time macroscopic self-diffusion coef
cientDS

L(f)/D0 as a function of volume fractionf. The datapoints
are experimental results of neutral PMMA spheres in organic
vents by van Megenet al. @36# ~s! and by Segre` et al.. @37# ~d!,
and of neutral silica spheres in cyclohexane obtained by Ko
Werkhoven et al. @38# ~,!. The solid line corresponds to th
present theory@cf. Eq. ~28!# and the dashed line to that of Medina
Noyola @19#, who solved approximately the generalized Lange
equation for the velocity of a tracer particle.
-

e

d

l

n
rg

suspensions and later by Wagner@14#, Baur et al. @15#, and
Nägele and Baur@16# in studies of charge-stabilized collo
dal suspensions.

~iii ! The last approximation discussed here is the Ki
wood superposition approximation and reads after a Fou
transformation, using Parcival’s theorem and the convolut
property of the Fourier transform

TK~k,q!5nS~q,f!H~k,f!1nS~ uk2qu,f!H~q,f!

1nS~k,f!H~ uk2qu,f!1
n2

8p3

3E dxH~ uk2xu,f!H~ uq2xu,f!H~x,f!11,

~32!

where we have introducedH(k,f), the Fourier transform of
h(r ,f)5g(r ,f)21, i.e.,

H~k,f!5
1

n
@S~k,f!21#. ~33!

We note that these three approximations do not exha
the number of approximations found in the literature. Ho
ever, they are the only closed results ink space suitable for
the calculations that we have performed.

The corresponding expressions for the vertex funct
V(k,q) in the Hess and Klein, the Jackson and Feenberg,
the Kirkwood approximation are

VHK~k,q!5nDS
S~f!k•$~k2q!H~ uk2qu,f!1qH~q,f!%,

~34!

VJF~k,q!5nDS
S~f!k•$~k2q!H~ uk2qu,f!1qH~q,f!%

1n2DS
S~f!k2H~q,f!H~ uk2qu,f!, ~35!

and

VK~k,q!5nDS
S~f!k•$~k2q!H~ uk2qu,f!1qH~q,f!%

1
n2DS

S~f!k2

S~k,f!
H~q,f!H~ uk2qu,f!

1
n2DS

S~f!k2

S~k,f!

1

8p3 E dxH~ uk2xu,f!

3H~ uq2xu,f!H~x,f!, ~36!

respectively. One can show straightforwardly that all thr
approximations forV(k,q) converge in the limit for largek
to Eq. ~23! for VS(k,q). Thus, limk→` DL(k,f)
5DS

L(k,f), as expected physically.
We have evaluated numerically Eq.~29! for the three ap-

proximations as a function of the wave numberk for a par-
ticular volume fractionf50.465. Here, we have used Eq
~24! and~25! for DS(k,f) andDS

S(f), respectively, and Eq
~33! for H(k,f), while S(k,f) is calculated as described i
Sec. III. The results are given in Fig. 4 and compared to
recent experimental results of Segre` and Pusey@1#. It is clear
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that the Kirkwood approximation is unable to descri
DL(k,f) for ks,5. This is due to theS(k,f) in the second
term on the right-hand side~rhs! of Eq. ~36!. For hard
spheres and high volume fractions,S(k,f) becomes close to
zero for a considerable range ofk values up toks'4, result-
ing in a very high value ofV(k,q). This blowing up at small
k is absent in the Hess and Klein approximation which
linear in S(k,f) @cf. Eq.~30!#. However, this approximation
is not symmetric in the mutual exchange of particles and
therefore unphysical. Furthermore, it is approximately a f
tor 3 too large at intermediate values ofk.

With respect to symmetry a more physical approximat
for the three-particle correlation function on the produ
level of the static structure factor would be

T~k,q!5S~q,f!@S~k,f!21#1S~ uk2qu,f!@S~q,f!21#

1S~k,f!@S~ uk2qu,f!21#11. ~37!

Comparing this to the Kirkwood approximation~32! it is
clear that this is equivalent to neglecting the integral on
rhs of Eq.~32!. The result of this approximation is also pr
sented in Fig. 4. The deviations between this result and
result obtained by using the full Kirkwood approximation a
remarkably small and are consequently due to the neglec
the integral on the rhs of Eq.~32!. We remark that the resul
based on Eq.~37! also does not work forks,5, consistent
with the fact that it is, just like the Kirkwood approximation
not linear inS(k,f).

We found that the best results are obtained by using
convolution approximation~31! of the triple correlation
function. In Fig. 5, these results are given for three of
volume fractions for which experimental results were ava

FIG. 4. Inverse relative long-time wave-number-dependent
lective diffusion coefficientD0 /DL(k,f) as a function ofks for
various approximations of the three-particle correlation function
f50.465. The solid circles are experimental results of neu
PMMA spheres in an organic solvent@1#. The solid line corre-
sponds to the present theory in the convolution approximation@cf.
Eqs. ~29! and ~35!#, the dashed line to that in the Hess and Kle
approximation@cf. Eqs.~29! and~34!#, and the open circles to tha
in the Kirkwood approximation@cf. Eqs.~29! and~36!#. The dotted
line corresponds to the present theory ifT(k,q) is approximated by
Eq. ~37!.
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able. Also given in Fig. 5 is the result for the long-tim
wave-number-dependent self-diffusion coefficient@cf. Eq.
~26!#, around whichDL(k,f) oscillates and to which it con
verges for largek. The intercept ofDS

L(k,f) with the y axis
gives the macroscopic self-diffusion coefficient as presen
in Fig. 3.

VI. DISCUSSION

In this paper we have shown that good agreement w
experimental results for both the self-diffusion and the c
lective diffusion can be obtained by using the cage-diffus
process as the primary physical process and incorpora
hydrodynamic interaction in a mean-field-like manner. W
have shown that recent experimental results, obtained
Segrè and Pusey@1#, for the long-time wave-number
dependent collective diffusion coefficient can be well und

l-

t
l

FIG. 5. Inverse relative long-time wave-number-dependent c
lective diffusion coefficientD0 /DL(k,f) as a function ofks for
three different volume fractionsf50.443~a!, 0.465~b!, and 0.494
~c!. The solid circles are experimental results of neutral PMM
spheres in an organic solvent@1#. The solid line represents the the
oretical result in the convolution approximation@cf. Eqs.~29! and
~35!#. The dashed line corresponds to the inverse relative long-t
wave-number-dependent self-diffusion coefficientD0 /DS

L(k,f) @cf.
Eq. ~26!#.
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stood on the basis of the theory presented here, and end
a number of remarks.

~i! The same theory as discussed here has been use
fore to understand fork50 the dynamic ~frequency-
dependent! and long-time macroscopic~Newtonian! shear
viscosityh(f,v) andhN(f), respectively@2#. HerehN(f)
is given by a time integral like Eq.~22! for the longitudinal
viscosity in whichk50 and wheres i(k) in Eq. ~13! is re-
placed by the orthogonal component of the microsco
stress@2#. The theoreticalh(f,v) and hN(f) are in good
agreement with a large range of experimental data@2,4#.
Thus it appears that not only the macroscopic (k50) quan-
tities h(f,v) and hN(f), but also the long-time wave
number-dependent diffusion coefficientsDL(k,f) and
DS

L(k,f) of concentrated neutral colloidal suspensions c
be described from one single viewpoint based on a ca
diffusion process in the suspension@9#.

~ii ! The conclusion that for neutral hard-sphere colloid
suspensions the best results forDL(k,f) are obtained by
using the convolution approximation~31! of the triple corre-
lation function is consistent with the earlier conclusion
Nägele and Baur@16#. It is interesting to note that we find th
same results for concentrated neutral suspensions as the
for dilute but strongly interacting charge-stabilized susp
sions.

~iii ! During the preparation of this paper Banchioet al.
@20# published results forDL(k5k* ,f), DS

L(f) andhN(f),
based on a self-consistent mode-mode coupling the
However, in their derivation they completely neglect hydr
dynamic interactions, which might well be the reason for
need of two empirical scaling procedures to obtain satis
tory agreement with experiment. First, they scaled the c
centration dependence with the volume fraction at the g
transition fg , i.e., they used an effective volume fractio
feff5f(fg/0.525) to evaluate their results. Here, they use
value fg50.62, obtained by fitting their expression fo
DS

L(f) to Brownian dynamics simulations at high densitie
Second, they scaled their mode-coupling expressions in s
a way that they effectively obtain the correct limiting beha
ior for the short-time transport coefficients when the mo
coupling contribution to the long-time transport coefficien
is neglected, i.e., Deff

L (k* ,f)'H(k* ,feff)D
L(k* ,feff),

DS,eff
L (f)'DS

S(feff)DS
L(feff)/D0 and hN,eff(f)

'h`(feff)hN(feff)/h0. However, although this second sca
ing gives the correct hydrodynamic behavior at short tim
it does not correct for the fact that hydrodynamic interactio
also modify the mode-mode coupling contribution to t
transport coefficients. This is most likely the reason w
they obtain the wrong glass transition, even though they
a self-consistent calculation.

Instead of these scaling rules, we have used a mean-
approximation for the diffusion tensor. We emphasize t
this is not a simple scaling with the short-time diffusion c
efficients like Bachioet al. @20#. Rather, it consistently modi
fies both the short-time behavior as well as the mo
coupling contribution as is evident by the appearance
DS

S(f) in the denominators of Eqs.~11! and ~21! and in the
final results forM (k,f,t) and MS(k,f,t) @cf. Eqs. ~16!,
~18!, ~22!, and ~23!#. Further investigation should focus o
finding a better approximation for the diffusion tensor
ith
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order to incorporate the near-field hydrodynamic inter
tions, which dominate the interaction at short times in neu
hard-sphere colloidal suspensions.

~iv! The shape of the theoretical result forD0 /DL(k,f) as
a function ofk is very similar to that ofD0 /DS(k,f) for all
f, a result already noted by Serge` and Pusey@1#. As shown
in Fig. 6, DL(k,f) as a function ofk oscillates around
DS

L(k,f), very much likeDS(k,f) oscillates aroundDS
S(f).

Therefore, the ratioDL(k,f)/DS(k,f) is mainly determined
by the ratioDS

L(k,f)/DS
S(f) as a function ofk and f. For

f50.465 andks neark* s'2p this ratio is approximately
independent ofk and equal to 3.6, close to the value of 4
found by Segre` and Pusey@1#.

We note that this scaling result only holds fork values
neark* , i.e., near the first peak of the static structure fact
since for monodisperse suspensions the ra
DL(k,f)/DS(k,f) tends to one for the bothk→0 as well as
for k→`. For k→0 this is due to the fact that the plan
wave collective density fluctuationdn(k) of Eq. ~2! becomes
an exact eigenfunction of the Smoluchowski operatorV̂ for
k→0, with a single eigenvalueDL(k50,f)5DS

L(k50,f).
It appears thatDL(k,f)/DS(k,f) quickly drops from 1 at
k50 to a value characterized byDS

L(k,f)/DS
S(f) whenks

.4.
~v! Figure 5 clearly shows that the theory predicts f

ks,5 a larger value ofDL(k,f) than was found experimen
tally, for all volume fractions. Furthermore, it shows that f
small values ofks, the experimental values forDL(k,f) are
considerably smaller than those forDS(k,f), in contradic-
tion with the above mentioned exact result for monodispe
suspensions, i.e.,DL(k50,f)/DS(k50,f)51. This sug-
gests that the deviation is caused by the polydispersity of

FIG. 6. Inverse relative wave-number-dependent long- a
short-time collective diffusion coefficientD0 /DL(k,f) and
D0 /DS(k,f), respectively, as a function ofks for f50.465. The
datapoints are experimental results forD0 /DL(k,f) ~d! and for
D0 /DS(k,f) ~s! of neutral PMMA spheres in an organic solve
@1#. The upper solid line corresponds to the present theory
D0 /DL(k,f) in the convolution approximation@cf. Eqs. ~29! and
~35!#, the lower solid line to that forD0 /DS(k,f) @cf. Eq.~24!#, the
upper dashed line corresponds to that forD0 /DS

L(k,f) @cf. Eq.
~26!# and finally the lower dashed line to that forD0 /DS

S(f) @cf.
Eq. ~25!#.
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PMMA particles. In fact, in order to study the effect of
small polydispersity on the long-time wave-numbe
dependent collective diffusion coefficient we have calcula
DL(k,f) for a suspension of hard-sphere particles with
narrow size distribution with a standard deviations!1
around a mean diameter^s&, by replacing the intermediat
scattering functionF(k,f,t) in Eq. ~9! with

FM~k,f,t !5~12x!F~k,f,t !1xFS~k,f,t !. ~38!

HereF(k,f,t)@FS(k,f,t)# is the intermediate@self-# scatter-
ing function of the monodisperse suspension andx51
2^s3&2/^s6&'9s2. Strictly, this approximation is only
valid for suspensions of particles with equal diameter a
interaction potential, but with different scattering amplitud
but the same decoupling is likely to hold for a small deg
of size polydispersity as well@21#.

Following then essentially the same procedure in Re
@15,16# for charged colloids, the following result is obtaine
for the measured long-time wave-number-dependent co
tive diffusion coefficient DM,L(k,f) of a neutral hard-
sphere-like colloidal suspension with a small size polydisp
sity

DM,L~k,f!5DL~k,f!

3H SM~k,f!

~12x!S~k,f!1xDL~k,f!/DS
L~k,f!J ,

~39!

whereSM(k,f)5FM(k,f,t50), the measured equilibrium
static structure factor. Figure 7 shows the result of Eq.~39!
for f50.465, for different polydispersitiess50.02, 0.04,
and 0.06, compared with the experimental result obtained
Segrèand Pusey@1# on a suspension of PMMA spheres
cis-decalin, with a polydispersity of 0.05. The decouplin

FIG. 7. Inverse relative long-time wave-number-dependent
lective diffusion coefficientD0 /DM ,L(k,f) in the convolution ap-
proximation@cf. Eq. ~39!# as a function ofks for f50.465 and for
different polydispersitiess52 ~dotted line!, 4 ~dashed line!, and 6
~dash-dotted line! compared to the experimental results of a susp
sion of PMMA spheres incis-decalin~d!, with a polydispersity of
s'5 @1#. The solid line corresponds to a monodisperse suspen
@cf. Fig. 5~b!#.
d
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approximation predicts the observed reduction~increase! of
DL(k,f)/D0@D0 /DL(k,f)#, at small values ofks, that was
found experimentally, but it seems to overestimate the eff
This may well be due to the crude approximation of Eq.~38!
and consequently the very approximate nature of Eq.~39!.
However, the qualitative agreement supports the hypoth
that the deviation between theory and experiment at sm
values ofks is caused by the polydispersity of the colloid
particles confirming the same conclusion reached before
charged suspensions@15,16#.

~vi! We have computed the time-correlation functio
M (k,f,t) of Eq. ~16! and MS(k,f,t) of Eq. ~22! for all
times using theshort-time expressions forF(k,f,t) and
FS(k,f,t) given by Eqs.~7! and ~8!, respectively. This in-
consistency can be remedied by using a self-consis
theory, where the behavior ofF(k,f,t) and FS(k,f,t) is
consistently modified in concordance with the computat
of the long-time diffusion coefficientsDL(k,f) and
DS

L(k,f), respectively. This is done in calculations for u
dercooled fluids and the glass transition@39# and more re-
cently in calculations for concentrated charged-stabiliz
colloidal suspensions@16#. Furthermore, we note that ou
expression~24! is strictly valid only for wave numbers nea
k5k* ~although Fig. 1 shows that it compares well wi
experiment for a considerable range ofk values!, where the
relaxation is particularly slow. For wave numbers farth
away from the peak of the static structure factor the deca
the intermediate scattering function becomes nonexpone
at intermediate and long times@40# and the use of the short
time expression~7! for F(k,f,t), with DS(k,f) given by
Eq. ~24! is once again no longer sufficient.

In addition, the Carnahan-Starling approximation used
x~f! in Eq. ~25! may not be adequate for the large volum
fractions f used in Segre` and Pusey’s experiments whic
approach the freezing transition. It seems that at these
high volume fractions the theory is not fully able to descri
the rapid decrease ofDL(k,f) at wave number neark
5k* . This was also observed in a study of the Newton
viscosity of concentrated neutral colloidal suspensions@4#,
where a quantitative agreement could be obtained after
radial distribution function at contactx(f)5g(r 5s,f) was
replaced by an expression with a pole near the glass tra
tion. This one-pole approximation, suggested by Brady@23#,
seems be more appropriate at the highest volume frac
and would increase the theoretical maxima neark5k* in the
direction of the experimental data.

However, in view of the many approximations made
the theory and the possible systematic errors in the exp
mental results, it is not easy to ascertain the origin of
deviations between theory and experiment. Nevertheless
overall agreement and similarity in behavior suggests t
the basic physical effects in concentrated colloidal susp
sions are present in the theory presented here.
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